Elevated temperature and pressure driven ampere-level CO2 electroreduction to CO in a membrane electrode assembly electrolyzer†
Abstract
Achieving high selectivity for carbon monoxide (CO) in the electrochemical reduction of carbon dioxide (CO2) at industrially relevant current densities, particularly using dilute CO2 feedstocks, remains a significant challenge. Herein, we demonstrate that combining elevated temperature and CO2 pressure substantially enhances CO production in a membrane electrode assembly (MEA) electrolyzer using commercially available silver nanoparticles. Elevated CO2 pressures increase CO2 concentration and reduce the diffusion layer, counteracting the reduced CO2 solubility in water and enhanced wetting of catalyst layer caused by high temperature. The synergy of high pressure and temperature ensures high CO2 flux to the catalyst surface while leveraging elevated temperatures to accelerate reaction kinetics. Therefore, the pressurized and heated CO2 electrolyzer achieves an FECO of 92% at a high current density of 2 A cm−2 and a low cell voltage of 3.8 V under 10 bar and 80 °C when using 0.1 M KHCO3 as the anolyte. Even when using pure water as the anolyte, the system maintains a FECO value of 90% at 300 mA cm−2 and a cell voltage of 3.6 V. Furthermore, the system demonstrates exceptional performance with dilute 10 vol% CO2 feedstocks, achieving a FECO of 96% at 100 mA cm−2 and 2.4 V. These findings underscore the potential of combined temperature and pressure optimization to overcome mass transport limitations and enhance reaction kinetics, offering a viable pathway for scaling up CO2 electrolyzers for industrial applications.