Advancements in dinitrogen activation for catalytic breakthroughs

Abstract

Activation and catalytic transformation of dinitrogen (N2) remains a grand challenge at the intersection of global food security, sustainable energy, and chemical manufacturing. The remarkable strength of the N[triple bond, length as m-dash]N bond poses formidable thermodynamic and kinetic barriers, driving reliance on the century-old Haber–Bosch process-an energy-intensive route that consumes substantial fossil fuels. Recent advances underscore a growing shift toward alternative strategies, including biological and enzymatic pathways inspired by nitrogenase, homogeneous catalysis through transition-metal complexes, plasma-assisted reactions leveraging high-energy species, and diverse electrochemical or thermo-electrochemical methods integrating renewable power. Key breakthroughs in catalyst design, from metal nitrides and single-atom catalysts to next-generation perovskite oxides, highlight the importance of targeted bond weakening, electron back-donation, and multi-electron/proton transfer steps. Concurrently, mechanistic insights gleaned from in situ spectroscopy, density functional theory, and machine learning-guided screening are refining our understanding of molecular orbital interactions and reaction intermediates. Looking ahead, the N2 activation field seeks to unite high efficiency with lower energy footprints by tailoring catalysts for mild conditions, exploring hydrogen sources beyond conventional H2, and adopting process intensification strategies to curb carbon emissions. By bridging fundamental discoveries with scalable engineering, future research should aim to deliver cost-effective, low-carbon nitrogen fixation, reshaping the global nitrogen economy and paving the way toward sustainable ammonia production and novel nitrogen-based chemicals.

Graphical abstract: Advancements in dinitrogen activation for catalytic breakthroughs

Transparent peer review

To support increased transparency, we offer authors the option to publish the peer review history alongside their article.

View this article’s peer review history

Article information

Article type
Review Article
Submitted
04 Feb 2025
Accepted
22 Apr 2025
First published
24 Apr 2025
This article is Open Access
Creative Commons BY-NC license

EES Catal., 2025, Advance Article

Advancements in dinitrogen activation for catalytic breakthroughs

V. V. Gande, N. C. Kani, I. Goyal, R. Chauhan, Y. Qi, S. A. Olusegun, J. A. Gauthier and M. R. Singh, EES Catal., 2025, Advance Article , DOI: 10.1039/D5EY00033E

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements