Quantum catalysts
Abstract
There is a non-local energy wave reality that rules our local observable experiences, which is non-observable directly using quantum mechanics based on continuous functions in space-time. Thus, wavefunctions start the transition from a classical deterministic realm to a probabilistic and discrete one. The principles of quantum mechanics fundamentally diverge from classical intuitions; thus, quantum materials have emerged as materials that cannot be described in terms of semiclassical particles and low-level approximations of quantum mechanics. Quantum materials have unique properties including non-weak (strong) electronic correlations and some type of electronic orders, such as superconducting and spin–orbital (magnetic) orders, and multiple coexisting interdependent phases, which are associated with new perceptions such as superposition and entanglement. Examples of quantum materials include superconductors, topological materials, Moiré superlattices, quantum dots and magnetically ordered materials. Many (solid) catalysts show distinctive quantum behaviours, which are frequently associated with open-shell orbital configurations. Thus, this perspective aims to show that the literature is already full of quantum catalysts, and it is necessary to distinguish them and adapt/improve their theoretical models for better understanding. Part of this work is focused on clarifying the complex language of many-body quantum physics, isolating the approximations that are not fundamentally complete, and connecting the non-classical interactions with more familiar concepts in chemistry. This approach is also valuable for the physics community, since it gives a more chemical view to the properties of quantum materials, with its adapted terminology. In this case, we aim to go beyond mathematics to try to explain the possible meaning and plausible real interpretation of quantum correlations. Only the understanding of true quantum potentials and their interplay within the transition state theory would enable a complete conceptual description of the most relevant electronic interactions in catalysis. Consequently, there is almost no new science in this article; it is mainly a collection of examples of quantum catalysts and the origin of the successful theoretical models that predicted the results. Finally, a perspective on the status of this emerging field is presented, emphasizing the imminent significant role of quantum correlations. Currently, the advanced incorporation of the fundamental principles of orbital physics in solid-state quantum catalysts is leading the technological transition towards a greener and more sustainable economy. Quantum correlations unify catalysis and embrace advanced physics, because the rivalry between quantum interactions is likewise the reference electronic background that explains the properties of quantum materials.