Volume 3, 2025

A supported Au/HZSM-5 catalyst for toluene removal by air plasma catalytic oxidation using the cycled storage-discharge (CSD) mode

Abstract

Air plasma catalytic oxidation of toluene (C7H8) with the cycled storage-discharge (CSD) mode is a promising technology for toluene (C7H8) removal. However, the problem of low CO2 selectivity must be solved. In this work, a novel HZSM-5 (HZ) supported Au catalyst (Au/HZ) with ca. 5.7 nm Au nanoparticles was prepared by combining impregnation-ammonia washing and plasma treatment, and adopted for C7H8 removal. Au/HZ displays a large breakthrough capacity and an excellent oxidation ability of C7H8 in dry and wet air plasma. To investigate the mechanism of CO2 selectivity improvement with the Au/HZ catalyst, air plasma catalytic oxidation of gaseous C7H8 and CO, as well as the adsorption of C7H8 and CO on the catalysts were conducted. For plasma-catalytic oxidation of gaseous C7H8 over Au/HZ, the CO2 selectivity is 97.5%, significantly higher than those of HZ (55%) and Ag/HZ (62%). In situ TPD tests indicate that Au/HZ possesses a moderate adsorption strength for CO and C7H8 compared with HZ and Ag/HZ. Meanwhile, plasma oxidation of CO over Au/HZ reaches 100%, which is much higher than those of HZ (15%) and Ag/HZ (24%). Nearly 100% C7H8 conversion and CO2 selectivity of plasma-catalytic oxidation of C7H8 on Au/HZ can be attributed to the moderate adsorption strength of Au/HZ for C7H8 and CO, and very high plasma catalytic activity for CO oxidation.

Graphical abstract: A supported Au/HZSM-5 catalyst for toluene removal by air plasma catalytic oxidation using the cycled storage-discharge (CSD) mode

Supplementary files

Article information

Article type
Paper
Submitted
01 Aug 2024
Accepted
02 Oct 2024
First published
03 Oct 2024
This article is Open Access
Creative Commons BY-NC license

EES Catal., 2025,3, 97-105

A supported Au/HZSM-5 catalyst for toluene removal by air plasma catalytic oxidation using the cycled storage-discharge (CSD) mode

A. Zhou, X. Li, J. Liu, L. Di and A. Zhu, EES Catal., 2025, 3, 97 DOI: 10.1039/D4EY00159A

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements