The impact of cationic polymer dosage on aerobic granular sludge formation and system performance

Abstract

Aerobic granular sludge technology faces a significant challenge regarding slow startup time when dealing with real wastewater. The present study introduces an innovative approach to decrease the granulation time while maintaining a substantial degree of organic and inorganic pollutant extraction. With this new strategy, aerobic granulation in an SBR is improved and accelerated by adding a cationic polymer. Hydrofloc cationic polymers were used to augment granule formation. Results show that adding a cationic polymer dosage of 15 ppm accelerated the formation of granules, reducing the reactor startup time. In the initial days, COD efficiency fluctuated due to the reactor's instability because of biomass discharge in the effluent. However, the COD removal efficiency reached 97 ± 1.5% after 15 days of operation of the reactor. NH4+–N, total phosphorus (TP), and total nitrogen (TN) removal efficiencies were 97%, 63%, and 76% on average throughout the 16–50 day stable operating stage. The findings suggest that using a cationic polymer can enhance the granulation process in an aerobic granular system.

Graphical abstract: The impact of cationic polymer dosage on aerobic granular sludge formation and system performance

Supplementary files

Transparent peer review

To support increased transparency, we offer authors the option to publish the peer review history alongside their article.

View this article’s peer review history

Article information

Article type
Paper
Submitted
23 Mar 2025
Accepted
15 Aug 2025
First published
18 Aug 2025

Environ. Sci.: Water Res. Technol., 2025, Advance Article

The impact of cationic polymer dosage on aerobic granular sludge formation and system performance

S. Hussain, Z. A. Solangi and G. Andreottola, Environ. Sci.: Water Res. Technol., 2025, Advance Article , DOI: 10.1039/D5EW00279F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements