Sustainable moisture-induced electricity from wood through asymmetric hygroscopic design and radiative cooling

Abstract

As an emerging sustainable energy technology, moisture-electric generators (MEGs) can spontaneously harvest electricity from ubiquitous water vapor. Natural wood, with its abundant oxygen-containing functional groups and anisotropic microchannels, is an ideal material for MEG fabrication. However, most wood-based generators rely on streaming potential driven by evaporation, requiring an external water supply to ensure continuous operation, which significantly limits their practical applications. Here, we present an asymmetric hygroscopic structure based on delignified natural wood, with LiCl and carbon black incorporated into the hygroscopic and hydrophobic sides, respectively. This design maintains a stable internal water content gradient through the dynamic equilibrium of moisture sorption–desorption, enabling continuous directional ion migration and stable output for over 220 h. Delignification enhances hydrophilicity and surface charge density by exposing cellulose nanofibrils. Additionally, the radiative cooling effect of the hygroscopic layer induced by delignification promotes moisture sorption and prevents the collapse of the water content gradient under solar heating. A single device can continuously generate an open-circuit voltage of ∼0.94 V and a short-circuit current of ∼43 µA at 25 °C and 70% RH, with a maximum output power density of ∼29 µW cm−3. This work provides a sustainable strategy for developing efficient bio-based MEGs.

Graphical abstract: Sustainable moisture-induced electricity from wood through asymmetric hygroscopic design and radiative cooling

Supplementary files

Transparent peer review

To support increased transparency, we offer authors the option to publish the peer review history alongside their article.

View this article’s peer review history

Article information

Article type
Paper
Submitted
28 Aug 2025
Accepted
11 Nov 2025
First published
01 Dec 2025

Energy Environ. Sci., 2025, Advance Article

Sustainable moisture-induced electricity from wood through asymmetric hygroscopic design and radiative cooling

C. Guo, H. Tang, D. Kong, Q. Chen, X. Wu, F. Fan, X. Zhao, R. Ding, W. Zhong and D. Zhao, Energy Environ. Sci., 2025, Advance Article , DOI: 10.1039/D5EE05073A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements