Built-in Single-Ion-Conducting Polymer Bridges for Superior Ion Transport Enabling Long-Life and High-Voltage Lithium-Metal Batteries

Abstract

Composite polymer electrolyte (CPE)-based Li metal batteries have emerged as the most promising candidates for next-generation batteries. However, intrinsic incompatibility between composite phases severely compromises electrolyte performance. Herein, we propose a built-in single-ion-conductor bridge that seamlessly links the garnet-type oxide phase with PVDF-based polymer matrixes, enabling excellent composite compatibility and superior Li⁺ fluxes throughout the bulk electrolyte. The 2‐acrylamido‐2‐methylpropanesulfonic acid molecule is chosen to in-situ convert the inert surface layer of garnet fast‐ion conductors into a molecular single‐ion-conducting layer with rapid ionic transport, effectively bridging ion transport among multiple components. The resulting CPE exhibits remarkable long-cycling stability under extreme conditions (e.g., high voltage of 4.5 V, high loading of 10.2 mg cm−2, and low temperature of –30 °C). Specifically, the assembled Li||LiNi0.9Co0.05Mn0.05O2 pouch cells delivered a stable cycling for 1200 cycles at 0.5 C. Moreover, the strategy is readily applicable to sodium metal batteries, achieving decay-free performance over 2200 cycles. Thus, it offers a promising approach for fabricating high-performance solid-state batteries.

Supplementary files

Transparent peer review

To support increased transparency, we offer authors the option to publish the peer review history alongside their article.

View this article’s peer review history

Article information

Article type
Paper
Submitted
06 Mar 2025
Accepted
30 Apr 2025
First published
02 May 2025

Energy Environ. Sci., 2025, Accepted Manuscript

Built-in Single-Ion-Conducting Polymer Bridges for Superior Ion Transport Enabling Long-Life and High-Voltage Lithium-Metal Batteries

J. Gong, Q. Peng, S. Zhao, T. Wen, H. Xu, W. Ma, Z. Yao, Y. Chen, G. Wang and S. Chen, Energy Environ. Sci., 2025, Accepted Manuscript , DOI: 10.1039/D5EE01338K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements