Issue 8, 2025

A universal strategy for defects and interface management enables highly efficient and stable inverted perovskite solar cells

Abstract

The surface post-treatment of perovskite films is regarded as one of the most effective methods for enhancing the performance of perovskite solar cells (PSCs) and is essential for achieving high-efficiency PSCs. However, a universal strategy for surface post-treatment that accommodates different A-site components and various bandgaps of perovskites has often been overlooked. In this study, we propose a universal strategy that simultaneously applies phenethylammonium bromide (PEABr) and 5-amino-1,3,4-thiadiazole-2-thiol (5ATT) to the top surface of perovskite films by a one-step spin-coating procedure. Both PEABr and 5ATT effectively passivate surface defects and improve interface contact. Additionally, 5ATT can infiltrate into the perovskite films longitudinally to passivate bulk defects, thereby achieving effective defects and interface management for reducing nonradiative recombination and extending carrier lifetimes. The optimized devices achieve a higher power conversion efficiency (PCE) of 24.85% (FAMACsRb) compared to the control device, which has a PCE of 21.47%. The stability of the best-performing device is also enhanced, maintaining 89% of its initial PCE after tracking at the maximum power point (MPP) for 600 hours. Furthermore, this strategy is reliably adaptable to the perovskites with different A-site components (MA, FACs, FAMACs) and various bandgaps (1.68, 1.77 and 1.82 eV), achieving a champion PCE of 25.88% (certified at 25.44%) based on the FAMACs PSC. The approach demonstrated in this work exhibits universal applicability across various perovskites, making it an attractive and promising method for the fabrication of single or tandem PSCs.

Graphical abstract: A universal strategy for defects and interface management enables highly efficient and stable inverted perovskite solar cells

Supplementary files

Article information

Article type
Paper
Submitted
06 Jan 2025
Accepted
17 Mar 2025
First published
19 Mar 2025

Energy Environ. Sci., 2025,18, 3828-3838

A universal strategy for defects and interface management enables highly efficient and stable inverted perovskite solar cells

W. Zhou, Y. Cai, S. Wan, Y. Li, X. Xiong, F. Zhang, H. Fu and Q. Zheng, Energy Environ. Sci., 2025, 18, 3828 DOI: 10.1039/D5EE00073D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements