Effervescent nozzle design to enable outdoor marine cloud brightening experimentation

Abstract

Marine Cloud Brightening (MCB) is a proposed solar radiation management technique whereby the albedo of low-lying clouds is artificially enhanced by the addition of Cloud Condensation Nuclei (CCN). It is generally accepted that these would be produced by atomisation of seawater to produce droplets which form appropriately sized artificial sea spray aerosol (SSA). Despite extensive theoretical consideration of the MCB concept, progress in understanding how perturbations to complex cloud microphysical processes would evolve has been hampered by the technical inability to produce the very large numbers of SSA required. To facilitate the first phase of outdoor experimentation a single MCB station should be capable of producing around 1015 per s CCN. Effervescent nozzle technology has been posited as potentially capable of meeting these requirements. Here we describe an effervescent nozzle design that produces ∼1.73 × 1012 per s SSA, with ∼71% of aerosols within a 30 to 1000 nm range (considered likely CCN), using ∼512 W of energy per nozzle. Producing 1015 CCN using this design would then require 814 nozzles and around 417 kW of energy, a demand that can be practically met on a research vessel. The nozzle described here is therefore sufficiently practical to facilitate outdoor in situ experimentation of MCB, enabling a new generation of perturbation experiments that directly probe cloud microphysical and radiative responses to aerosol.

Graphical abstract: Effervescent nozzle design to enable outdoor marine cloud brightening experimentation

Article information

Article type
Paper
Submitted
24 Jun 2025
Accepted
18 Aug 2025
First published
26 Aug 2025
This article is Open Access
Creative Commons BY-NC license

Environ. Sci.: Atmos., 2025, Advance Article

Effervescent nozzle design to enable outdoor marine cloud brightening experimentation

L. P. Harrison, C. Medcraft and D. P. Harrison, Environ. Sci.: Atmos., 2025, Advance Article , DOI: 10.1039/D5EA00073D

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements