Size-resolved cloud droplet acidity over the US
Abstract
The acidity of cloud droplets can vary with size due to differences in aerosol composition and cloud chemistry and differential soluble gas uptake. Chemical transport models (CTMs) often assume that all droplets have the same composition and therefore acidity. In this work, we use the PMCAMx CTM to simulate size-resolved cloud and fog droplet acidity over the US during a winter and a summer month as a function of altitude. Small droplets are assumed to form on the activated particles smaller than 2.5 μm and have an average diameter of 20 μm, whereas large droplets form on the coarse particles and have an average diameter of 30 μm. Our simulations show that large droplets are often more alkaline than small (up to 100% lower H+ concentrations) especially in regions influenced by dust. In areas with more acidic conditions, the difference in H+ concentrations between small and large droplets is smaller. The pH of droplets either decreases or increases with altitude, depending on the composition of the aerosol on which the droplets were formed. Comparison of the bulk and two-section size-resolved approaches indicates that current differences in aqueous-phase sulfate concentrations over the US are generally low and usually less than 20% at approximately 10 min intervals (the most frequent difference ranges from zero to 5%). Based on our results, bulk calculations can simulate current aerosol composition and droplet pH over the US with small discrepancies. This is due to reduced SO2 emissions causing SO2 levels in clouds to often fall below those of H2O2. Under these conditions the importance of the pH-dependent ozone sulfate production pathway is diminished. These findings are specific to the US and may not apply to regions with higher SO2 emissions.