Cl2 chemical ionization mass spectrometry (Cl2-CIMS) for the measurement of acyl peroxy radicals

Abstract

Organic peroxy radicals (RO2) are produced in the atmosphere by oxidation of volatile organic compounds (VOCs) and, in some cases, VOC photolysis. However, photolytic sources of RO2 are often poorly understood, in part due to challenges in directly detecting RO2 in both ambient and laboratory settings. We investigated Cl2 as a chemical ionization mass spectrometry reagent ion (Cl2-CIMS) for measuring and speciating RO2 in a laboratory setting. Cl2-CIMS was more sensitive to the acetyl peroxy radical (CH3C(O)O2; 2.30 ± 0.04 ncps/ppt) than iodide CIMS (I-CIMS; 1.54 ± 0.03 ncps/ppt), but high backgrounds in our setup resulted in a slightly higher detection limit of 5 ppt (1 second integration) for Cl2-CIMS than I-CIMS (2 ppt). We demonstrate the application of Cl2-CIMS by quantifying the quantum yields of two radical products, CH3C(O) and C2H5C(O), from methyl ethyl ketone photolysis at 254 nm. We identified O2 and Cl as possible secondary reagent ions that created unintended product ions in our experiments and thus could complicate the interpretation of Cl2-CIMS mass spectra for complex atmospheric samples. While several strategies may minimize these effects, Cl2-CIMS is suitable for measuring RO2 in controlled laboratory experiments.

Graphical abstract: Cl2− chemical ionization mass spectrometry (Cl2-CIMS) for the measurement of acyl peroxy radicals

Supplementary files

Transparent peer review

To support increased transparency, we offer authors the option to publish the peer review history alongside their article.

View this article’s peer review history

Article information

Article type
Paper
Submitted
07 Apr 2025
Accepted
28 Apr 2025
First published
28 Apr 2025
This article is Open Access
Creative Commons BY license

Environ. Sci.: Atmos., 2025, Advance Article

Cl2 chemical ionization mass spectrometry (Cl2-CIMS) for the measurement of acyl peroxy radicals

T. C. Berg, M. F. Link and D. K. Farmer, Environ. Sci.: Atmos., 2025, Advance Article , DOI: 10.1039/D5EA00043B

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. You can use material from this article in other publications without requesting further permissions from the RSC, provided that the correct acknowledgement is given.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements