Nanoscale Ruthenium(III) Complexes with Bioactive Ligands: Structural, Colloidal, and Dual Antimicrobial–Cytotoxic Investigations
Abstract
This study comprehensively analyses two new ruthenium(III) complexes, RuIIICl4(Nic)2]−[(CH3)2NH2]+DMF, 1, and [RuIIICl2(3-HPA)2]−[3-HH2PA]+(EtOH)2, 2, (where Nic = nicotinic acid (vitamin B3), 3-HPA = anion of a 3-hydroxypicolinic acid), as potential antimicrobial agents, highlighting their physicochemical properties, nanoparticle formation, and bactericidal activity. The complexes were fully characterised by a single crystal X-ray diffraction technique, Fourier-transform infrared, energy-dispersive X-ray, and electron paramagnetic resonance spectroscopies. The synthesis of micro- and nanoparticles (NPs) of these complexes was performed using the liquid anti-solvent crystallisation method. The formation of NPs was confirmed, and their sizes were determined using scanning electron microscopy and dynamic light scattering techniques. The Debye-Scherrer technique, based on powder diffraction X-ray data, indicated the high crystallinity of the nanomaterials. Toxicity and morphological effects on L929 fibroblasts, hepatocellular carcinoma (Hep-G2) and human epithelial colorectal adenocarcinoma (Caco-2) cell lines of the complexes were assessed using the MTT assay and an inverted phase-contrast microscope, respectively. Complex 1 is a promising anti-cancer drug candidate targeting intestinal cancers, showing cytotoxicity against Caco-2 cancer cells and no cytotoxicity against L929 fibroblast cells, while complex 2 is markedly cytotoxic. The antibacterial activity of the complexes was assessed against methicillin-resistant Staphylococcus aureus (MRSA) and Klebsiella pneumoniae strains using the minimum inhibitory concentration (MIC) method. Complex 2 demonstrates superior bactericidal properties, achieving MIC values as low as 125 μg/ml for S. aureus, while complex 1 exhibits lower antimicrobial efficacy. The role of ligand composition in modulating bioactivity was examined.