A tight binding pocket in photoluminescent N^C^N cyclometalated Pt(ii), Pd(ii), and Ni(ii) complexes
Abstract
In the frame of our research aiming to develop efficient triplet-emitting materials, we are exploring the role of the second coordination sphere in enhancing the rigidity of structures and its controlling aspect over the extents of excited state distortions. We thus synthesised three N^C^N cyclometalated complexes [M(LBn)Cl] (M = Pt, Pd, and Ni), where the two ortho-positions of the pyridyl moieties in 1,3-di(2-pyridyl)-benzene are benzyl substituted (Bn) forming a tight binding pocket for the metal and the Cl− ancillary ligand. The molecular structures from single-crystal X-ray diffraction show a markedly distorted square planar M(II) coordination with τ4 values of around 0.4. UV-vis absorption spectra show long-wavelength bands in the range 350 to 5400 nm with the energies increasing along the series Ni < Pt < Pd. The Pt(II) complex emits in solution at 298 K (λmax = 544 nm) and displays aggregated emission within poly(methyl methacrylate) (PMMA) films at various concentrations at 298 K. The Pd(II) derivative exhibits a broad emission band at 77 K in a frozen glassy 2-MeTHF matrix, peaking at 530 nm. Very different from the Pt(II) and Pd(II) spectra, the Ni(II) sample showed a broad emission with λmax = 699 nm at 77 K, with a quantum yield of 20% and ms lifetime. TD-DFT calculated decomposition of the assumed emissive T1 state showed similar 3MLCT character of about 30% for all three complexes, but marked differences in LC character of about 38% for Pd and Pt and only 5% for Ni. In turn, for Ni the by far the highest MC character (42%) was calculated which strongly speaks against triplet photoluminescence from the Ni(II) complex.

Please wait while we load your content...