Solvent-free mechanochemical access to phase-pure Cs–Co–Cl halometalates with tuneable electronic properties for energy applications†
Abstract
We report a solvent-free mechanochemical route for the selectively synthesis of three different caesium cobalt chlorides: CsCoCl3, Cs2CoCl4, and Cs3CoCl5, by simply tuning the CsCl : CoCl2 precursor ratio. This is the first comprehensive comparative study of these phases synthesized in pure form, enabling a clear correlation between composition, crystal structure, and optoelectronic properties. Each phase exhibits a unique Co2+ coordination geometry: octahedral in CsCoCl3 and tetrahedral in Cs2CoCl4 and Cs3CoCl5, as revealed by XRD, SEM-EDS, Raman, and XPS, with several features reported here for the first time. All phases display high thermal stability and narrow optical bandgaps (1.65–1.70 eV), supported by ligand field analysis and CIE colorimetry. Valence and conduction band energies determined by VB-XPS and cyclic voltammetry reveal a systematic, composition-driven tuning of energy levels across the series. Importantly, the band edge alignment are suitable for visible-light-driven hydrogen evolution and photovoltaic applications. SCAPS-1D simulations predict power conversion efficiencies up to 17.1%, positioning these halocobaltates as promising absorbers. Altogether, this work introduces a scalable synthesis route and demonstrates the potential of cobalt-based halide frameworks as modular systems for solar energy conversion and photocatalysis.