Issue 28, 2025

Copper(ii) complex with a redox-noninnocent Schiff base bearing a tetraphenyldisiloxane unit: synthesis, structure and catalytic oxidation of cyclohexane

Abstract

An organic–inorganic diamine, 1,3-bis(aminopropyl)tetraphenyldisiloxane, was prepared and introduced as a flexible spacer into the structure of a salen-type Schiff base (H2L7) extending the available small library of similar compounds derived from 1,3-bis(aminopropyl)tetramethyldisiloxane and substituted 2-hydroxybenzaldehydes (H2L1–H2L6). Like the previously reported mononuclear copper(II) complexes [CuL1]–[CuL6], the new copper(II) complex [CuL7], obtained by reaction of Cu(OAc)2·H2O with H2L7 in a mixture of organic solvents, has a tetrahedrally distorted square-planar (N2O2) coordination geometry. X-ray crystallography has shown that compared to [CuL1]–[CuL6] the Si–O–Si angle in [CuL7] is even closer to linear due to stronger intramolecular interactions between Ph groups than between Me groups in the central–R2Si–O–SiR2– fragment (R = Ph and Me, respectively). [CuL7] can be electrochemically reversibly oxidised by two successive one-electron processes, generating stable phenoxyl mono- and diradicals. Both oxidations are ligand-centred, leading to the formation of coordinated phenoxyl radicals. The UV spectrum of [CuL7] consists of π → π* and LMCT σ → d transitions. The low-energy d–d absorption is well described by AILFT CAS(9,5)/NEVPT2 calculations. The one-electron oxidised compound [CuL7]+ should exist in the triplet ground state as 3[CuL7]+ with one unpaired electron located on the dx2−y2 orbital of copper(II) (d9, SCu = ½) and another electron on the molecular orbital (MO) comprising pz oxygen and carbon atoms of the phenoxyl radical (Srad = ½). The broad absorption in the vis-NIR region of the optical spectrum of the one-electron oxidised complex is due to intervalence charge transfer in the triplet species 3[CuL7]+, but not in the [CuL7]2+ one. The doubly oxidised [CuL7] species shows very close doublet and quartet states, where the doublet state has an unpaired electron located on the Cu(II) d-orbital, while the quartet state has one unpaired electron on the Cu(II) d-orbital and two unpaired electrons on π-bonding orbitals. In all state-averaged CASSCF cases, the occupation of the Cu(II) d-orbital is nearly 1.0, indicating its limited involvement in the excited states. Catalytic studies showed that [CuL7] acts as a catalyst for the oxidation of alkanes with peroxides under very unusual solvent-free conditions, converting cyclohexane into cyclohexanol and cyclohexanone (with hydrogen peroxide or tert-butyl hydroperoxide as the oxidant) or into cyclohexanol and ε-caprolactone (with m-chloroperoxybenzoic acid as the oxidant). Theoretical investigations of the catalytic reaction mechanisms disclosed the principal intermediates.

Graphical abstract: Copper(ii) complex with a redox-noninnocent Schiff base bearing a tetraphenyldisiloxane unit: synthesis, structure and catalytic oxidation of cyclohexane

Supplementary files

Transparent peer review

To support increased transparency, we offer authors the option to publish the peer review history alongside their article.

View this article’s peer review history

Article information

Article type
Paper
Submitted
01 May 2025
Accepted
14 Jun 2025
First published
17 Jun 2025
This article is Open Access
Creative Commons BY license

Dalton Trans., 2025,54, 10984-11005

Copper(II) complex with a redox-noninnocent Schiff base bearing a tetraphenyldisiloxane unit: synthesis, structure and catalytic oxidation of cyclohexane

C. Wittmann, O. Palamarciuc, M. Dascalu, M. Cazacu, D. S. Nesterov, A. J. L. Pombeiro, P. Rapta and V. B. Arion, Dalton Trans., 2025, 54, 10984 DOI: 10.1039/D5DT01028D

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. You can use material from this article in other publications without requesting further permissions from the RSC, provided that the correct acknowledgement is given.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements