Functional biomimetics for copper oxidases: interesting catalytic promiscuity of novel monocopper(ii) complexes

Abstract

Employing H(L1) [2-((pyridine-2-ylmethyl)imino)methylphenol] or H(L2) [2-((pyridine-2-ylethyl)imino)methylphenol] and phen (1,10-phenanthroline), two novel monocopper(II) complexes, [Cu(L1/L2)(phen)](ClO4) (1 or 2), have been produced and studied. The single-crystal structure of the complex ion in 2, as determined by X-ray structure analysis, shows a trigonal bipyramidal geometry with distortion (τ, 0.65). DFT calculations were used to investigate the molecular geometry of copper(II) complexes in solution as well as their electronic characteristics. The electronic and EPR spectra in the solid-state of 1 and 2 reveal a trigonal bipyramidal geometry, whereas the geometry in solution is square pyramidal. The positive and reversible nature of the redox pair (CuII/CuI) makes redox states easily interconvertible. The catalysts in methanol and/or the buffer induced three separate chemical changes: (i) ascorbic acid → dehydroascorbic acid, (ii) benzylamine → benzaldehyde, and (iii) 3,5-di-tert-butylcatechol → 3,5-di-tert-butylquinone. Their kcat results show higher activities of amine oxidase (105 h−1). Ascorbate oxidase (107 h−1) and catechol oxidase (106 h−1) activity in the buffer yields kcat values that are closer to those of the natural enzyme. This is due to the presence of ligand flexibility, structural distortion, an appropriate chelate ring size, a labile donor, a positive redox potential, and a persistent catalyst–substrate interaction. Therefore, the two monocopper(II) complexes serve as the most efficient promiscuous catalysts, acting as complementary agents to the activity of copper oxidase enzymes and superior models for oxidation processes.

Graphical abstract: Functional biomimetics for copper oxidases: interesting catalytic promiscuity of novel monocopper(ii) complexes

Supplementary files

Transparent peer review

To support increased transparency, we offer authors the option to publish the peer review history alongside their article.

View this article’s peer review history

Article information

Article type
Paper
Submitted
11 Jan 2025
Accepted
27 Mar 2025
First published
10 Apr 2025

Dalton Trans., 2025, Advance Article

Functional biomimetics for copper oxidases: interesting catalytic promiscuity of novel monocopper(II) complexes

V. C. Ravisankar, B. Selvakumaran, T. Ajaykamal and M. Murali, Dalton Trans., 2025, Advance Article , DOI: 10.1039/D5DT00077G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements