Issue 8, 2025

Thermal management broadband-emitting device based on VO2 applied in the mid-infrared band

Abstract

Mid-infrared thermal radiation has attracted attention due to its wide range of applications. Compared to the static process of thermal emission, if thermal radiation can be dynamically controlled, it would be more suitable for practical applications. Herein, we designed a controllable thermal emitter based on phase change materials. When the temperature changes from low to high, VO2 transitions from a dielectric state to a metallic state, and its imaginary part of the dielectric constant significantly increases, leading to differences in emission characteristics. At low temperatures, the device is in a low dielectric state and resonates weakly with incident light. The main emission comes from the bottom of the grating structure, with an emissivity of 0.21. At high temperatures, the structure is in a high dielectric state, and multiple resonance modes are excited within the structure, such as cavity resonance and surface plasmon resonance, which increases the emissivity to 0.95 and achieves effective heat dissipation. Given its superior thermal management capabilities and stability, this design holds promise for applications in thermal imaging, infrared communication, and energy-efficient devices.

Graphical abstract: Thermal management broadband-emitting device based on VO2 applied in the mid-infrared band

Transparent peer review

To support increased transparency, we offer authors the option to publish the peer review history alongside their article.

View this article’s peer review history

Article information

Article type
Paper
Submitted
10 Dec 2024
Accepted
13 Jan 2025
First published
14 Jan 2025

Dalton Trans., 2025,54, 3157-3164

Thermal management broadband-emitting device based on VO2 applied in the mid-infrared band

Y. Zheng, Z. Wang, Q. Song, Z. Yi, S. Cheng and Y. Yi, Dalton Trans., 2025, 54, 3157 DOI: 10.1039/D4DT03422H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements