Optimizing Data Extraction from Materials Science Literature: A Study of Tools Using Large Language Models

Abstract

Large Language Models (LLMs) are increasingly utilized for large-scale extraction and organization of unstructured data owing to their exceptional Natural Language Processing (NLP) capabilities. Empowering materials design, vast amounts of data from experiments and simulations are scattered across numerous scientific publications, but high-quality experimental databases are scarce. This study considers the effectiveness and practicality of five representative AI tools (ChemDataExtractor, BERT-PSIE, ChatExtract, LangChain, and Kimi) to extract bandgaps from 200 randomly selected Materials Science publications in two presentations (arXiv and publisher versions), comparing the results to those obtained by human processing. Although the integrity of data extraction has not met expectations, encouraging results have been achieved in terms of precision and the ability to eliminate irrelevant papers from human consideration. Our analysis highlights both the strengths and limitations of these tools, offering insights into improving future data extraction techniques for enhanced scientific discovery and innovation. In conjunction with recent research, we provide guidance on feasible improvements for future data extraction methodologies, helping to bridge the gap between unstructured scientific data and structured, actionable databases.

Supplementary files

Article information

Article type
Paper
Submitted
30 Oct 2025
Accepted
09 Dec 2025
First published
10 Dec 2025
This article is Open Access
Creative Commons BY-NC license

Digital Discovery, 2025, Accepted Manuscript

Optimizing Data Extraction from Materials Science Literature: A Study of Tools Using Large Language Models

W. Ning, J. R. Reimers, M. Li and R. Kobayashi, Digital Discovery, 2025, Accepted Manuscript , DOI: 10.1039/D5DD00482A

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements