Issue 11, 2025

Optimal message passing for molecular prediction is simple, attentive and spatial

Abstract

Strategies to improve the predicting performance of Message-Passing Neural-Networks for molecular property predictions can be achieved by simplifying how the message is passed and by using descriptors that capture multiple aspects of molecular graphs. In this work, we designed model architectures that achieved state-of-the-art performance, surpassing more complex models such as those pre-trained on external databases. We assessed dataset diversity to complement our performance results, finding that structural diversity influences the need for additional components in our MPNNs and feature sets. In most datasets, our best architecture employs bidirectional message-passing with an attention mechanism, applied to a minimalist message formulation that excludes self-perception, highlighting that relatively simpler models, compared to classical MPNNs, yield higher class separability. In contrast, we found that convolution normalization factors do not benefit the predictive power in all the datasets tested. This was corroborated in both global and node-level outputs. Additionally, we analyzed the influence of both adding spatial features and working with 3D graphs, finding that 2D molecular graphs are sufficient when complemented with appropriately chosen 3D descriptors. This approach not only preserves predictive performance but also reduces computational cost by over 50%, making it particularly advantageous for high-throughput screening campaigns.

Graphical abstract: Optimal message passing for molecular prediction is simple, attentive and spatial

Supplementary files

Transparent peer review

To support increased transparency, we offer authors the option to publish the peer review history alongside their article.

View this article’s peer review history

Article information

Article type
Paper
Submitted
12 May 2025
Accepted
21 Sep 2025
First published
16 Oct 2025
This article is Open Access
Creative Commons BY-NC license

Digital Discovery, 2025,4, 3320-3338

Optimal message passing for molecular prediction is simple, attentive and spatial

A. C. Castañeda-Leautaud and R. E. Amaro, Digital Discovery, 2025, 4, 3320 DOI: 10.1039/D5DD00193E

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements