Issue 7, 2025

Setting new benchmarks in AI-driven infrared structure elucidation

Abstract

Automated structure elucidation from infrared (IR) spectra represents a significant breakthrough in analytical chemistry, having recently gained momentum through the application of Transformer-based language models. In this work, we improve our original Transformer architecture, refine spectral data representations, and implement novel augmentation and decoding strategies to significantly increase performance. We report a Top-1 accuracy of 63.79% and a Top-10 accuracy of 83.95% compared to the current performance of state-of-the-art models of 53.56% and 80.36%, respectively. Our findings not only set a new performance benchmark but also strengthen confidence in the promising future of AI-driven IR spectroscopy as a practical and powerful tool for structure elucidation. To facilitate broad adoption among chemical laboratories and domain experts, we openly share our models and code.

Graphical abstract: Setting new benchmarks in AI-driven infrared structure elucidation

Supplementary files

Transparent peer review

To support increased transparency, we offer authors the option to publish the peer review history alongside their article.

View this article’s peer review history

Article information

Article type
Paper
Submitted
31 Mar 2025
Accepted
19 Jun 2025
First published
25 Jun 2025
This article is Open Access
Creative Commons BY-NC license

Digital Discovery, 2025,4, 1936-1943

Setting new benchmarks in AI-driven infrared structure elucidation

M. Alberts, F. Zipoli and T. Laino, Digital Discovery, 2025, 4, 1936 DOI: 10.1039/D5DD00131E

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements