Accelerating optimization of halide perovskites: two blueprints for automation

Abstract

The fine-tuning of halide perovskite materials for both performance and stability calls for innovative tools that streamline high-throughput experimentation. Here, we present two complementary systems designed to accelerate the development of solution-processed thin-film semiconductors. HITSTA (High-Throughput Stability Testing Apparatus) is a robust, cost-effective platform for optical characterization and accelerated aging, built around a repurposed 3D printer. It accommodates up to 49 thin-film samples, subjecting them to temperatures up to 110 °C and light intensities of 2.2 suns while continuously monitoring their absorptance and photoluminescence. ROSIE (Robotic Operating System for Ink Engineering) is a liquid-handling robot constructed from a hobbyist robotic arm and a syringe pump, enabling precise and automated ink formulation. We detail the design and operation of both systems, providing guidelines for their replication. To demonstrate their capabilities, we present a case study in which ROSIE and HITSTA are used to investigate the aging of mixed-cation, mixed-halide inorganic perovskites. Together, these systems form a powerful toolkit for accelerating the optimization of solution-processable thin-films via high-throughput experimentation.

Graphical abstract: Accelerating optimization of halide perovskites: two blueprints for automation

Supplementary files

Transparent peer review

To support increased transparency, we offer authors the option to publish the peer review history alongside their article.

View this article’s peer review history

Article information

Article type
Paper
Submitted
18 Mar 2025
Accepted
18 Aug 2025
First published
25 Aug 2025
This article is Open Access
Creative Commons BY license

Digital Discovery, 2025, Advance Article

Accelerating optimization of halide perovskites: two blueprints for automation

H. A. Can, D. A. Jacobs, N. Fürst, C. Ballif and C. M. Wolff, Digital Discovery, 2025, Advance Article , DOI: 10.1039/D5DD00110B

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. You can use material from this article in other publications without requesting further permissions from the RSC, provided that the correct acknowledgement is given.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements