Issue 4, 2025

BitBIRCH: efficient clustering of large molecular libraries

Abstract

The widespread use of Machine Learning (ML) techniques in chemical applications has come with the pressing need to analyze extremely large molecular libraries. In particular, clustering remains one of the most common tools to dissect the chemical space. Unfortunately, most current approaches present unfavorable time and memory scaling, which makes them unsuitable to handle million- and billion-sized sets. Here, we propose to bypass these problems with a time- and memory-efficient clustering algorithm, BitBIRCH. This method uses a tree structure similar to the one found in the Balanced Iterative Reducing and Clustering using Hierarchies (BIRCH) algorithm to ensure O(N) time scaling. BitBIRCH leverages the instant similarity (iSIM) formalism to process binary fingerprints, allowing the use of Tanimoto similarity, and reducing memory requirements. Our tests show that BitBIRCH is already >1000 times faster than standard implementations of the Taylor–Butina clustering for libraries with 1 500 000 molecules. BitBIRCH increases efficiency without compromising the quality of the resulting clusters. We explore strategies to handle large sets, which we applied in the clustering of one billion molecules under 5 hours using a parallel/iterative BitBIRCH approximation.

Graphical abstract: BitBIRCH: efficient clustering of large molecular libraries

Supplementary files

Transparent peer review

To support increased transparency, we offer authors the option to publish the peer review history alongside their article.

View this article’s peer review history

Article information

Article type
Paper
Submitted
22 Jan 2025
Accepted
11 Mar 2025
First published
13 Mar 2025
This article is Open Access
Creative Commons BY-NC license

Digital Discovery, 2025,4, 1042-1051

BitBIRCH: efficient clustering of large molecular libraries

K. L. Pérez, V. Jung, L. Chen, K. Huddleston and R. A. Miranda-Quintana, Digital Discovery, 2025, 4, 1042 DOI: 10.1039/D5DD00030K

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements