Issue 1, 2025

Comprehensive sampling of coverage effects in catalysis by leveraging generalization in neural network models

Abstract

Sampling high-coverage configurations and predicting adsorbate–adsorbate interactions on surfaces are highly relevant to understand realistic interfaces in heterogeneous catalysis. However, the combinatorial explosion in the number of adsorbate configurations among diverse site environments presents a considerable challenge in accurately estimating these interactions. Here, we propose a strategy combining high-throughput simulation pipelines and a neural network-based model with the MACE architecture to increase sampling efficiency and speed. By training the models on unrelaxed structures and energies, which can be quickly obtained from single-point DFT calculations, we achieve excellent performance for both in-domain and out-of-domain predictions, including generalization to different facets, coverage regimes and low-energy configurations. From this systematic understanding of model robustness, we exhaustively sample the configuration phase space of catalytic systems without active learning. In particular, by predicting binding energies for over 14 million structures within the neural network model and the simulated annealing method, we predict coverage-dependent adsorption energies for CO adsorption on six Cu facets (111, 100, 211, 331, 410 and 711) and the co-adsorption of CO and CHOH on Rh(111). When validated by targeted post-sampling relaxations, our results for CO on Cu correctly reproduce experimental interaction energies reported in the literature, and provide atomistic insights on the site occupancy of steps and terraces for the six facets at all coverage regimes. Additionally, the arrangement of CO on the Rh(111) surface is demonstrated to substantially impact the activation barriers for the CHOH bond scission, illustrating the importance of comprehensive sampling on reaction kinetics. Our findings demonstrate that simplified data generation routines and evaluating generalization of neural networks can be deployed at scale to understand lateral interactions on surfaces, paving the way towards realistic modeling of heterogeneous catalytic processes.

Graphical abstract: Comprehensive sampling of coverage effects in catalysis by leveraging generalization in neural network models

Supplementary files

Transparent peer review

To support increased transparency, we offer authors the option to publish the peer review history alongside their article.

View this article’s peer review history

Article information

Article type
Paper
Submitted
15 Oct 2024
Accepted
27 Nov 2024
First published
09 Dec 2024
This article is Open Access
Creative Commons BY-NC license

Digital Discovery, 2025,4, 234-251

Comprehensive sampling of coverage effects in catalysis by leveraging generalization in neural network models

D. Schwalbe-Koda, N. Govindarajan and J. B. Varley, Digital Discovery, 2025, 4, 234 DOI: 10.1039/D4DD00328D

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements