Machine learning for accelerated prediction of lattice thermal conductivity at arbitrary temperature
Abstract
Efficient evaluation of lattice thermal conductivity (κL) is critical for applications ranging from thermal management to energy conversion. In this work, we propose a neural network (NN) model that allows ready and accurate prediction of the κL of crystalline materials at arbitrary temperature. It is found that the data-driven model exhibits a high coefficient of determination between the real and predicted κL. Beyond the initial dataset, the strong predictive power of the NN model is further demonstrated by checking several systems randomly selected from previous first-principles studies. Most importantly, our model can realize high-throughput screening on countless systems either inside or beyond the existing databases, which is very beneficial for accelerated discovery or design of new materials with desired κL.