Issue 1, 2025

Powder X-ray diffraction assisted evolutionary algorithm for crystal structure prediction

Abstract

Experimentally obtained powder X-ray diffraction (PXRD) patterns can be difficult to solve, precluding the full characterization of materials, pharmaceuticals, and geological compounds. Herein, we propose a method based upon a multi-objective evolutionary search that uses both a structure's enthalpy and similarity to a reference PXRD pattern (constituted by a list of peak positions and their intensities) to facilitate structure solution of inorganic systems. Because the similarity index is computed for locally optimized cells that are subsequently distorted to find the best match with the reference, this process transcends both computational (e.g., choice of theoretical method, and 0 K approximation) and experimental (e.g., external stimuli, and metastability) limitations. We illustrate how the proposed methodology can be employed to successfully uncover complex crystal structures by applying it to a range of test cases, including inorganic minerals, elements ramp-compressed to extreme conditions, and molecular crystals. The results demonstrate that our approach not only improves the accuracy of structure prediction, but also significantly reduces the time required to achieve reliable solutions, thus providing a powerful tool for the advancement of materials science and related fields.

Graphical abstract: Powder X-ray diffraction assisted evolutionary algorithm for crystal structure prediction

Supplementary files

Article information

Article type
Paper
Submitted
21 Aug 2024
Accepted
06 Nov 2024
First published
06 Nov 2024
This article is Open Access
Creative Commons BY-NC license

Digital Discovery, 2025,4, 73-83

Powder X-ray diffraction assisted evolutionary algorithm for crystal structure prediction

S. Racioppi, A. Otero-de-la-Roza, S. Hajinazar and E. Zurek, Digital Discovery, 2025, 4, 73 DOI: 10.1039/D4DD00269E

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements