Issue 1, 2025

Acquisition of absorption and fluorescence spectral data using chatbots

Abstract

The field of photochemistry underpins broad scientific endeavors, encompasses diverse molecular substances, and incorporates descriptions of qualitative and quantitative properties, all of which together may be representative of many scientific disciplines. Yet finding absorption and fluorescence spectra along with companion values of the molar absorption coefficient (ε) and fluorescence quantum yield (Φf) for a given compound is an arduous task even with the most advanced search methods. To gauge whether chatbots could be used to reliably search the literature, the absorption and fluorescence spectra and quantitative parameters (ε and Φf) for 16 popular dyes and fluorophores were sought using ChatGPT 3.5, ChatGPT 4o, Microsoft Copilot, Google Gemini, Gemini advanced, and Meta AI. In most cases, the values of ε and Φf returned by the chatbots accurately cohered with known values from established resources, whereas the retrieval of spectra was only marginally successful. The chatbots were further challenged to find data for fictive compounds (e.g., rhodamine 7G). The results from each chatbot were categorized as follows: “fabricated” (provides numbers that do not exist in the context queried), “fooled” (mis-identifies the compound but does not return any data), “feigned” (acts as if the fictive compound is real but does not provide any data), or “faithful” (responds that the compound is not known or is not available). In summary, the present shortcomings should not cloud the view that chatbots – judiciously used – already provide a valuable resource for the challenging scientific task of finding granular data, and to lesser degree, spectral traces for known compounds.

Graphical abstract: Acquisition of absorption and fluorescence spectral data using chatbots

Supplementary files

Article information

Article type
Paper
Submitted
09 Aug 2024
Accepted
29 Nov 2024
First published
16 Dec 2024
This article is Open Access
Creative Commons BY-NC license

Digital Discovery, 2025,4, 21-34

Acquisition of absorption and fluorescence spectral data using chatbots

M. Taniguchi and J. S. Lindsey, Digital Discovery, 2025, 4, 21 DOI: 10.1039/D4DD00255E

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements