Unraveling the critical impact of anisotropic La motion on methane dissociation over the La2O3(001) surface
Abstract
The dynamic behavior of catalysts under reaction conditions markedly influences their catalytic performance, highlighting the need to elucidate these effects for mechanistic understanding and catalyst design. In this study, by combining density functional theory calculations and ab initio molecular dynamics simulations, we identify pronounced upward displacements of surface La species on the La2O3(001) surface at typical reaction temperatures. These atomic motions activate a previously disfavored C–H bond cleavage pathway, which effectively suppresses product recombination and enhances catalytic efficiency by promoting rapid separation of the dissociation products. Our results underscore the significant role of lattice dynamics in altering reaction mechanisms on oxide catalysts and offer valuable insights for the development of high-performance catalytic systems.

Please wait while we load your content...