Strengthening P–S bonding in TiO2 for enhanced fuel cell startup/shutdown durability with an N, P, S–TiO2/S–TiN catalyst

Abstract

Durability is crucial in polymer electrolyte fuel cells (PEFCs). The carbon supports currently employed in cathodes are oxidized during startup/shutdown, by increasing the cathode potential up to 1.5 V, causing the supported platinum–cobalt (PtCo/C) catalysts to lose activity. Therefore, system-level measures are currently used to control the potential below 1.0 V, which increases the cost of PEFCs. A recently reported S-doped TiN-supported N, P, S-tridoped TiO2 catalyst is a promising candidate to replace currently available PtCo/C catalysts because, unlike other platinum group metal (PGM)-free catalysts, it is free from carbon supports. During the startup/shutdown cycles, the doped N3− and S2− anions substituted for O2− in the TiO2 lattice were stable, but some of the P5+ cations substituted for Ti4+ were removed from the TiO2 surface, causing activity loss. Herein, P5+ dopants are stabilized by increasing the S2− doping level, resulting in excellent startup/shutdown durability and enhanced intrinsic activity. The resulting reduction of half-wave potential after 5000 cycles between 1.0 and 1.5 V is the lowest of any reported PGM-free catalysts, at only 0.02 V. The P–S bonds formed in the TiO2 lattice were found to be responsible for the durability of P5+, which provides a new strategy to accelerate the development of low-cost PGM-free catalysts with excellent durability.

Graphical abstract: Strengthening P–S bonding in TiO2 for enhanced fuel cell startup/shutdown durability with an N, P, S–TiO2/S–TiN catalyst

Supplementary files

Transparent peer review

To support increased transparency, we offer authors the option to publish the peer review history alongside their article.

View this article’s peer review history

Article information

Article type
Paper
Submitted
20 May 2025
Accepted
13 Jul 2025
First published
14 Jul 2025

Catal. Sci. Technol., 2025, Advance Article

Strengthening P–S bonding in TiO2 for enhanced fuel cell startup/shutdown durability with an N, P, S–TiO2/S–TiN catalyst

M. Chisaka, J. A. Shamim and H. Daiguji, Catal. Sci. Technol., 2025, Advance Article , DOI: 10.1039/D5CY00601E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements