Preparation and characterization of a highly dispersed Ru/CeZrO2 catalyst for CO2 methanation with improved activity

Abstract

CO2 hydrogenation to methane has drawn increasing interest in recent years. Significant efforts are being made to find a catalyst with superior catalytic performance at low temperatures. In this work, a highly dispersed Ru/CeZrO2 catalyst with a Ce/Zr molar ratio of 4/1 was prepared via the decomposition of a ruthenium precursor by energetic species (such as electrons and radicals) from a dielectric barrier discharge (DBD) plasma, operated at about 150 °C. This was followed by thermal hydrogen reduction, resulting in dramatically enhanced activity and stability. For instance, at 275 °C, the methane formation rate on the plasma-decomposed catalyst was found to be about twice that of the catalyst prepared by the thermal decomposition of ruthenium precursor. The plasma-decomposed catalyst exhibited higher dispersion of Ru nanoparticles, enhanced electronic metal–support interactions and improved hydrogen dissociation ability, further facilitating hydrogen spillover from Ru to the surface of CeZrO2 support. Thus, the plasma decomposition caused more surface oxygen vacancies, providing additional adsorption sites for CO2. Analyses via in situ diffuse reflectance infrared Fourier transform spectroscopy revealed that CO2 methanation followed the HCOO* and CO* routes on both catalysts, while the plasma decomposition treatment mainly facilitated catalytic performance at low temperatures by accelerating the formation and consumption of HCOO* in the formate route.

Graphical abstract: Preparation and characterization of a highly dispersed Ru/CeZrO2 catalyst for CO2 methanation with improved activity

Supplementary files

Article information

Article type
Paper
Submitted
02 Nov 2024
Accepted
07 Jan 2025
First published
10 Jan 2025

Catal. Sci. Technol., 2025, Advance Article

Preparation and characterization of a highly dispersed Ru/CeZrO2 catalyst for CO2 methanation with improved activity

W. Yan, M. Liu, M. Li, L. Xu and C. Liu, Catal. Sci. Technol., 2025, Advance Article , DOI: 10.1039/D4CY01332H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements