Ni single atom catalyst with high Ni–Nx content for efficient electrocatalytic reduction of CO2†
Abstract
The CO2 electrocatalytic reduction reaction (CO2RR) is currently an effective strategy for mitigating excessive global carbon dioxide emissions and accelerating the carbon cycle. Nonetheless, there are still significant obstacles to develop CO2RR catalysts with superior activity and excellent selectivity. Herein, we report a porous nitrogen-doped carbon material (Ni/NC-x) with high content of Ni–Nx units prepared by hydrothermal and pyrolytic methods. The content of Ni–Nx in Ni/NC-x samples was controlled by finely adjusting the proportion of additive PVP. The optimized Ni/NC-2 : 1 catalyst showed a CO partial current density (jCO) of 46.88 mA cm−2 and a CO faradaic efficiency (FECO) of up to 96% at −0.73 V vs. RHE; a FECO of 88% can be maintained in the flow cell while achieving jCO of 273.63 mA cm−2. Analysis through a thermodynamic–kinetic mechanism model suggests that the bifunctional Ni–Nx sites help to reduce the barrier of CO2 chemisorption and provide sufficient *CO2 for electron transfer during the reaction, hence enhancing the kinetics of CO2RR processes.