Recent progress in gel catalysts: boosting efficiency for sustainable energy applications
Abstract
Achieving carbon neutrality and mitigating global warming necessitate a shift from fossil fuels to renewable energy sources. This review explores the pivotal role of polymeric gels in advancing energy conversion and storage technologies, highlighting their potential in reducing CO2 emissions. Gels exhibit unique properties such as thermal conductivity, mechanical resilience, and catalytic efficiency, making them promising candidates for energy applications like photovoltaic cells, batteries, and electrocatalytic systems. Their flexible structure, large surface areas, and porous nature significantly improve redox reaction efficiency and energy storage capacity. Recent innovations, especially hybrid gels combining conducting polymers and nanoparticles, have enhanced catalytic performance, electrical conductivity, and durability, offering more sustainable energy solutions. This review thoroughly examines the synthesis methods, structural properties, and performance metrics of gel materials, focusing on their applications in fuel cells, batteries, and supercapacitors. It also addresses the mechanisms behind energy conversion facilitated by these materials and discusses challenges related to scalability and long-term durability. By providing a comprehensive overview of recent advancements, this review aims to guide future research and drive technological progress in the field of sustainable energy, positioning gel catalysts as key components in the transition to cleaner, more efficient energy systems.