Advances in oxide thermoelectric materials: strategies, applications and beyond
Abstract
Oxide thermoelectric materials have emerged as promising candidates for sustainable energy applications owing to their inherent thermal stability, environmental benignity, elemental abundance, and low cost. This review comprehensively summarizes the recent advances in oxide thermoelectrics, covering synthesis methodologies for bulk and thin-film oxides as well as state-of-the-art advances in thermoelectric performance. Particular emphasis is placed on multiple optimization strategies aimed at carrier-phonon decoupling in oxides (such as high entropy design, texturization, homo-structure construction, and symmetry modulation) and emerging applications based on oxide thermoelectrics (including the photothermoelectric effect, and transverse thermoelectric effect), distinguished from conventional thermoelectric energy conversion. These coupled functionalities open new avenues for multi-modal energy harvesting and intelligent device integration. Finally, we highlight critical challenges and unresolved issues that need to be addressed in future research and practical applications in oxide thermoelectrics.

Please wait while we load your content...