Emerging applications and mechanistic insights of copper mediated electrocatalysts in organic transformations
Abstract
Current trends in synthetic organic chemistry lean towards atom-economical and sustainable methodologies, moving away from traditional thermal processes. Electrocatalysis using transition metal complexes has been discussed as an attractive way to accomplish such goals, given oxidants or reductants are substituted by electrons from a power source. The use of copper complexes has been a staple of many classical organic transformations, and extensive research has been undertaken on the many reactions and mechanisms that exist. In contrast, most research involving copper electrosynthesis methodologies has been developed contemporarily. This review aims to explore the current state-of-the-art for copper-based electrocatalysis (or mediated electrosynthesis), with an emphasis on mechanistic proposals and insights that are uniquely extracted by electrochemical methodologies such as cyclic voltammetry or spectroelectrochemistry. By exploring the interplay between redox-active copper chemistry and the possibilities from electrochemical processes, the goal of this treatise is to inspire researchers to transform established approaches and explore new opportunities in copper-based electrosynthesis to advance the field of sustainable organic synthesis.