Accelerating battery innovation: AI-powered molecular discovery

Abstract

The global energy transition urgently demands advanced battery technologies to address current climate challenges, where molecular engineering plays a pivotal role in optimizing performance metrics such as energy density, cycling lifespan, and safety. This review systematically examines the integration of artificial intelligence (AI) into molecular discovery for next-generation battery systems, addressing both transformative potential and sustainability challenges. Firstly, multidimensional strategies for molecular representation are delineated to establish machine-readable inputs, serving as a prerequisite for AI-driven molecular discovery (Section 2). Subsequently, AI algorithms are systematically summarized, encompassing classical machine learning, deep learning, and the emerging class of large language models (Section 3). Next, the substantial potential of AI-powered predictions for key electrochemical properties is illustrated, including redox potential, viscosity, and dielectric constant (Section 4). Through paradigmatic case studies, significant applications of AI in molecular design are elucidated, spanning chemical knowledge discovery, high-throughput virtual screening, oriented molecular generation, and high-throughput experimentation (Section 5). Finally, a general conclusion and a critical perspective on current challenges and future directions are presented, emphasizing the integration of molecular databases, algorithms, computational power, and autonomous experimental platforms. AI is expected to accelerate molecular design, thereby facilitating the development of next-generation battery systems and enabling sustainable energy innovations.

Graphical abstract: Accelerating battery innovation: AI-powered molecular discovery

Article information

Article type
Review Article
Submitted
05 May 2025
First published
22 Sep 2025

Chem. Soc. Rev., 2025, Advance Article

Accelerating battery innovation: AI-powered molecular discovery

Y. Gao, X. Chen, Y. Yuan, Y. Chen, Y. Niu, N. Yao, Y. Gao, W. Li and Q. Zhang, Chem. Soc. Rev., 2025, Advance Article , DOI: 10.1039/D5CS00053J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements