Synthesis innovations for crystallizing covalent organic framework thin films on biological and non-biological substrates

Abstract

Thin film technology has emerged as a pivotal field with numerous industrial applications. Depending on their properties—such as magnetic characteristics, conductivity, architectural structure, stability, and functional backbones—thin films are widely utilized in optoelectronics, thin-film coatings, solar cells, energy storage devices, semiconductors, and separation applications. However, for all these applications, thin films must be securely attached to specific substrates, and substrate compatibility with both the thin film and the film-growth process is crucial for optimal performance. In this review, we emphasize the significance of growing thin films, particularly covalent organic framework (COF) thin films, on suitable substrates tailored for various applications. For separation technologies, polymer thin films are commonly fabricated on porous polymeric or metal-based membranes. In contrast, thin films of metals and metal oxides are typically deposited on conducting substrates, serving as current collectors for energy storage devices. Semiconductor thin films, on the other hand, are often grown on silicon or glass substrates for transistor applications. Emerging COF thin films, with their tunable properties, well-defined pore channels, and versatile functional backbones, have demonstrated exceptional potential in separation, energy storage, and electronic and optoelectronic applications. However, the interplay between COF thin films and the substrates, as well as the compatibility of growth conditions, remains underexplored. Studies investigating COF thin film growth on substrates such as metals, metal oxides, glass, silicon, polymers, ITO, and FTO have provided insights into substrate properties that promote superior film growth. The quality of the film formed on these substrates significantly influences performance in applications. Additionally, we discuss the stabilization of biological substrates, like peptide-based biomimetic catalysts and enzymes, which often suffer from instability in non-aqueous environments, limiting their industrial use. Growing COF membranes on these biological substrates can enhance their stability under harsh conditions. We also highlight techniques for growing COF membranes on biological substrates, ensuring the preservation of their structural integrity and functional properties.

Graphical abstract: Synthesis innovations for crystallizing covalent organic framework thin films on biological and non-biological substrates

Article information

Article type
Review Article
Submitted
05 Dec 2024
First published
05 Mar 2025
This article is Open Access
Creative Commons BY-NC license

Chem. Soc. Rev., 2025, Advance Article

Synthesis innovations for crystallizing covalent organic framework thin films on biological and non-biological substrates

A. K. Mahato, S. Paul and R. Banerjee, Chem. Soc. Rev., 2025, Advance Article , DOI: 10.1039/D4CS01222D

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements