Asymmetrically tailored catalysts towards electrochemical energy conversion with non-precious materials
Abstract
Electrocatalytic technologies, such as water electrolysis and metal–air batteries, enable a path to sustainable energy storage and conversion into high-value chemicals. These systems rely on electrocatalysts to drive redox reactions that define key performance metrics such as activity and selectivity. However, conventional electrocatalysts face inherent trade-offs between activity, stability, and scalability particularly due to the reliance on noble metals. Asymmetrically tailored electrocatalysts (ATEs) – systems that are being exploited for non-symmetric designs in composition, size, shape, and coordination environments – offer a path to overcome these barriers. Here, we summarize recent developments in ATEs, focusing on asymmetric coupling strategies employed in designing these systems with non-precious transition metal catalysts (TMCs). We explore tailored asymmetries in composition, size, and coordination environments, highlighting their impact on catalytic performance. We analyze the electrocatalytic mechanisms underlying ATEs with an emphasis on their roles in water-splitting and metal–air batteries. Finally, we discuss the challenges and opportunities in advancing the performance of these technologies through rational ATE designs.