Lite Version|Standard version

To gain access to this content please
Log in via your home Institution.
Log in with your member or subscriber username and password.
Download

Accurate interpretation of observational astronomical data requires reliable collisional rate coefficients for inelasting scattering events between interstellar molecules and the abundant buffer species. A five-dimensional potential energy surface (PES) for the PH3 ( 1A1) – H2 (1Σ+g) interaction was generated using the explicitly correlated CCSD(T)-F12 method in conjunction with the correlation-consistent triple-zeta aug-cc-pVTZ basis set, and averaged over H2 orientations to yield a reduced three-dimensional surface. Inelastic rotational cross-sections for collisions between ortho and para-PH3 with para-H2 (J = 0) are calculated using the close-coupling quantum scattering method. After Boltzmann thermal averaging, the rate coefficients are evaluated for temperatures up to 100 K. Our results reveal substantial discrepancies between computed PH3-para-H2 collisional rates and scaled PH3–He values, underlining the inadequacy of scaling approaches for reliable astrophysical modelling.

Graphical abstract: Rigid rotor state-to-state cross-sections and rates of the PH3 + H2 collision

Page: ^ Top