Issue 40, 2025

Insights into the oxygen evolution mechanism of transition metal-anchored holey graphyne

Abstract

Growing worldwide environmental concerns linked to the overuse of fossil fuels and rising energy demands are driving a thorough and comprehensive search for clean, sustainable sources of energy. Water electrolysis has recently become a highly appealing method for achieving optimal energy conversion and storage. This study employs density functional theory to investigate the catalytic performance along with the electronic properties of pristine and adatom-doped transition metal (TMs = Sc, Pt, Co, Cr, and Au)-anchored holey graphyne (HGY). Among all considered candidates, Pt-doped HGY gives the best oxygen evolution reaction (OER) with the overpotential equivalent to 0.74 V. This catalyst is deemed optimal for further exploration of the OER mechanism. Through molecular dynamics (MD) simulations, the structural along with thermal stability of Pt@HGY has been confirmed. The convincing results motivate the use of Pt-anchored HGY as an efficient OER mechanism catalyst.

Graphical abstract: Insights into the oxygen evolution mechanism of transition metal-anchored holey graphyne

Supplementary files

Transparent peer review

To support increased transparency, we offer authors the option to publish the peer review history alongside their article.

View this article’s peer review history

Article information

Article type
Paper
Submitted
03 Jun 2025
Accepted
11 Sep 2025
First published
01 Oct 2025
This article is Open Access
Creative Commons BY-NC license

Phys. Chem. Chem. Phys., 2025,27, 21739-21751

Insights into the oxygen evolution mechanism of transition metal-anchored holey graphyne

K. S. Joseph, B. Chakraborty and S. Dabhi, Phys. Chem. Chem. Phys., 2025, 27, 21739 DOI: 10.1039/D5CP02097B

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements