Enhanced oil recovery promoted by aqueous deep eutectic solvents on silica and calcite surfaces: a molecular dynamics study†
Abstract
Enhanced oil recovery (EOR) plays a critical role in optimizing oil extraction from existing fields to satisfy global energy demands while mitigating environmental impact. One promising EOR technique involves injecting water with reduced surface tension utilizing deep eutectic solvents (DESs). Despite early experimental support, the efficacy of aqueous–DES EOR varies and depends on factors such as connate water saturation, water salinity, and reservoir wettability. The recovery mechanisms for aqueous DESs are poorly understood due to the intricate nature of oil components and reservoir formation. In this paper, we investigate the role of DESs in the EOR process through molecular dynamics (MD) simulations. Three different types of DES molecules, such as choline chloride : urea (ChCl : U), choline chloride : ethylene glycol (ChCl : EG), and menthol : salicylic acid (M : SA) are used, for the recovery of dodecane (C12H26) oil from silica and calcite confined surfaces. We have demonstrated the structural characteristics of these systems by examining various physical properties, including interaction energies, density profiles, hydrogen bonds, and interfacial tension (IFT). Different concentrations (10 and 25 wt%) of DESs have been considered to unravel the effect of concentration on oil removal. The wettability of the substrate and the IFT between oil and aqueous DESs are critical physical properties that play a crucial role in influencing EOR phenomena. The IFT between water and oil decreases with the addition of DESs for all DES molecules, leading to a shift in surface behavior from oleophilic to oleophobic and ultimately facilitating the removal of oil from the substrate. Additionally, hydrogen bond formation between DESs and water has been calculated to elucidate its influence on the water/oil interface and substrate wettability. The study provides insights into the fundamental aspects of EOR processes for more effective and sustainable oil extraction.