Aggregation-Induced Emission Mechanism of Styrene Derivative: A Theoretical Study

Abstract

The aggregation-induced emission (AIE) mechanism of the fluorescent styrene derivative 4-dimethylamino-2-benzylidene malonic acid dimethyl ester (BIM) in methanol solution is theoretically investigated using spin-flip long-range corrected time-dependent density functional theory (SF-LC-TDDFT). The potential energy surfaces (PESs) for the ground (S0) and first singlet excited (S1) states of BIM were calculated along the rotation of the aryl main axis (α angle rotation), consistent with experimental observations. For the monomer, our findings reveal a significant reduction in oscillator strength, approaching zero at the optimized geometry in the S1 state. As this state corresponds to a charge transfer state, it suggests that the BIM monomer operates as a twisted intramolecular charge transfer (TICT) system, undergoing quenching through α angle rotation. The restriction of TICT, and consequently the inhibition of fluorescence quenching in the aggregate state, is also investigated by extracting the coordinates of 13 monomers from the crystal structure of BIM. The α-torsional angle of the central monomer was manually rotated in both clockwise and anti-clockwise directions to assess the intramolecular restrictions within the constrained environment. This analysis reveals that even a 10° rotation of the α-torsional angle, in either direction, causes the atoms of the central monomer to come into close contact with the atoms of the neighboring monomers. These short contacts effectively inhibit the TICT process, thereby leading to aggregation-induced emission.

Supplementary files

Article information

Article type
Paper
Submitted
16 Dec 2024
Accepted
27 May 2025
First published
28 May 2025
This article is Open Access
Creative Commons BY-NC license

Phys. Chem. Chem. Phys., 2025, Accepted Manuscript

Aggregation-Induced Emission Mechanism of Styrene Derivative: A Theoretical Study

A. Aarzoo, K. Saita, M. Kobayashi, T. Tsuneda, T. Taketsugu and R. K. ROY, Phys. Chem. Chem. Phys., 2025, Accepted Manuscript , DOI: 10.1039/D4CP04742G

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements