Steric effects in the adsorption of O2 on a Cu(111) surface†
Abstract
Probing the stereodynamics of a gas–surface interaction is a useful tool to investigate the mechanisms responsible for adsorption. Experimental results are provided on the adsorption of alignment-controlled O2 interacting with a Cu(111) surface for the first time, across a range of incident energies (65–550 meV) and angles of incidence (0–60°). Molecules of O2 in a supersonic beam are prepared in a single spin-rotational state, and aligned with a Cu(111) surface so that the rotational angular momentum of O2 is either parallel or perpendicular to the surface. A strong steric effect is observed, where the initial sticking probability is higher in the case of a 'side-on' collision, with measurable adsorption appearing at normal incident energies of 100 meV. The onset of sticking occurs at incident energies of approximately 200 meV in the case of an 'end-on' collision. The results also indicate that the adsorption of O2 on Cu(111) is predominantly due to an activated process in the energy range probed, corroborating previous experimental and theoretical results.

Please wait while we load your content...