Issue 14, 2025

Development of a chemical code applicable to ions based on the PHITS code for efficient and visual radiolysis simulations

Abstract

Water radiolysis plays an important role in elucidating radiation-induced biological effects such as early DNA damage induction, chromosome aberrations, and carcinogenesis. Several Monte Carlo simulation codes for water radiolysis, commonly referred to as chemical simulation codes, have been developed worldwide. However, these codes typically require substantial computational time to calculate the time-dependent G values of water radiolysis species (e.g., ˙OH, eaq, H2, and H2O2), and their application is often limited to specific ion beam types. In the Particle and Heavy Ion Transport code System (PHITS), the track-structure mode that allows the simulation of each atomic interaction in liquid water for any charged particles and the subsequent chemical code (named PHITS-Chem code) dedicated to electrons was developed previously. In this study, we developed the PHITS-Chem code to support a broader range of ion beam species. To reduce computational time, we introduced new features including a space partitioning method to increase the detection efficiency of reactions between chemical species and a radical scavenger model that reduces the lifetime of OH radicals. We benchmarked the updated PHITS-Chem code by comparing its predicted time-dependent G values for protons, α particles, and carbon ions with those reported in the literature (i.e., other simulation and measured data). The inclusion of a space partitioning method and the modified OH radical scavenger model reduced the time required by the PHITS-Chem code to calculate G values (by approximately 28-fold during radiolysis simulations under 1-MeV electron exposure) while maintaining calculation accuracy. A key advantage of the PHITS-Chem code is the four-dimensional visualization capability, integrated with PHITS′ native visualization software, PHIG-3D. Considering the ability of the PHITS-Chem code to handle OH radical scavengers (i.e., tris(hydroxymethyl)aminomethane and dimethyl sulfoxide), it is anticipated to offer precise and intuitive insights into the radiation-induced biological effects of chemical species in ion-beam radiotherapy.

Graphical abstract: Development of a chemical code applicable to ions based on the PHITS code for efficient and visual radiolysis simulations

Supplementary files

Article information

Article type
Paper
Submitted
05 Nov 2024
Accepted
17 Jan 2025
First published
21 Mar 2025

Phys. Chem. Chem. Phys., 2025,27, 6887-6898

Development of a chemical code applicable to ions based on the PHITS code for efficient and visual radiolysis simulations

Y. Matsuya, Y. Yoshii, T. Kusumoto, T. Ogawa, S. Ohnishi, Y. Hirata, T. Sato and T. Kai, Phys. Chem. Chem. Phys., 2025, 27, 6887 DOI: 10.1039/D4CP04216F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements