Issue 7, 2025

Two-photon absorption of BODIPY, BIDIPY, GADIPY, and SBDIPY

Abstract

Substituted boron-dipyrromethene compounds (BODIPYs) have gained significant attention due to their tunable photophysical properties, including two-photon absorption (2PA), a nonlinear optical process where two photons are absorbed simultaneously. The tuning of BODIPY's photophysical properties has recently led to the synthesis of pnictogen-containing derivatives, such as SBDIPY and BIDIPY, where boron is replaced by antimony (Sb) or bismuth (Bi), respectively, as well as other analogues like GADIPY, which contain gallium (Ga). This study presents a computational investigation into their 2PA properties, exploring the impact of various substitutions across these systems. The 2PA cross-sections (σ2PA), electronic excitation energies (ΔE), and dipole moments (μ00, μ11, μ01, Δμ) were computed for 18 DIPY chromophores in the gas-phase with time-dependent density-functional theory (TD-DFT) using several functionals (CAM-B3LYP, ωB97X, M06-2X, M11, and MN15), and then compared to second-order approximate coupled-cluster with the resolution-of-identity approximation (RI-CC2) results. The computed mean absolute errors were small, with the MN15, CAM-B3LYP, and M06-2X functionals being among the best-performing for the properties analyzed. In general, for the parent (unsubstituted) compounds, replacing the core atom in DIPY chromophores results in negligible changes to their σ2PA. However, extending the conjugation through the addition of phenyl substituents significantly increases σ2PA values, and the nature of the core atom impacts the magnitude of this enhancement.

Graphical abstract: Two-photon absorption of BODIPY, BIDIPY, GADIPY, and SBDIPY

Supplementary files

Article information

Article type
Paper
Submitted
11 Oct 2024
Accepted
27 Jan 2025
First published
28 Jan 2025
This article is Open Access
Creative Commons BY-NC license

Phys. Chem. Chem. Phys., 2025,27, 3873-3884

Two-photon absorption of BODIPY, BIDIPY, GADIPY, and SBDIPY

I. A. Elayan, M. Zhou and A. Brown, Phys. Chem. Chem. Phys., 2025, 27, 3873 DOI: 10.1039/D4CP03915G

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements