Deep learning-driven prediction of chemical addition patterns for carboncones and fullerenes

Abstract

Carboncones and fullerenes are exemplary π-conjugated carbon nanomaterials with unsaturated, positively curved surfaces, enabling the attachment of atoms or functional groups to enhance their physicochemical properties. However, predicting and understanding the addition patterns in functionalized carboncones and fullerenes are extremely challenging due to the formidable complexity of the regioselectivity exhibited in the adducts. Existing predictive models fall short in systems where the carbon molecular framework undergoes severe distortion upon high degrees of addition. Here, we propose an incremental deep learning approach to predict regioselectivity in the hydrogenation of carboncones and chlorination of fullerenes. Utilizing exclusively graph-based features, our deep neural network (DNN) models rely solely on atomic connectivity, without requiring 3D molecular coordinates as input or their iterative optimization. This advantage inherently avoids the risk of obtaining chemically unreasonable optimized structures, enabling the handling of highly distorted adducts. The DNN models allow us to study regioselectivity in hydrogenated carboncones of C70H20 and C62H16, accommodating up to at least 40 and 30 additional H atoms, respectively. Our approach also correctly predicts experimental addition patterns in C50Cl10 and C76Cln (n = 18, 24, and 28), whereas in the latter cases all other known methods have been proven unsuccessful. Compared to our previously developed topology-based models, the DNN's superior predictive power and generalization ability make it a promising tool for investigating complex addition patterns in similar chemical systems.

Graphical abstract: Deep learning-driven prediction of chemical addition patterns for carboncones and fullerenes

Supplementary files

Article information

Article type
Paper
Submitted
17 Aug 2024
Accepted
13 Dec 2024
First published
17 Dec 2024

Phys. Chem. Chem. Phys., 2025, Advance Article

Deep learning-driven prediction of chemical addition patterns for carboncones and fullerenes

Z. Li, X. Chen and Y. Wang, Phys. Chem. Chem. Phys., 2025, Advance Article , DOI: 10.1039/D4CP03238A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements