Issue 48, 2025

Proton conduction in three molecular assemblies of bipyridyl–organodisulfonate salts

Abstract

Three new crystalline organic salts (COSs) comprising 4,4′-biphenyldisulfonic acid (bpds) and different bipyridyl derivatives—2,2′-bipyridine (22bpy), 1,2-di(4-pyridyl)ethylene (bpee), and 2,5-di(pyridin-4-yl)-1,3,4-oxadiazole (bpdoz)—have been synthesized and characterized in terms of structure and proton conductivity. The organic salts, [bpds][22bpy] (1), [bpds][bpee]·2H2O (2), and [bpds][bpdoz]·H2O (3), form two- or three-dimensional (2D/3D) hydrogen-bonded networks. In each salt, proton transfer from the sulfonic acid group to the bipyridyl nitrogen acceptor results in the formation of ionic heterosynthons. The proton conductivities of the compounds were measured at 90 °C and 95% relative humidity, yielding maximum values of 8.69 × 10−5 S cm−1 for 1, 1.09 × 10−3 S cm−1 and 1.27 × 10−4 S cm−1 for both 2 and 3. The strong humidity dependence of conductivity, coupled with activation energies of 0.51 eV for 1, and 0.56 and 0.43 eV for 2 and 3, respectively, suggests a proton transport mechanism consistent with the vehicle mechanism, facilitated by crystalline water molecules and extended hydrogen-bonded networks. Notably, the enhanced proton conduction observed in 2 is attributed to its continuous 1D hydrogen-bonded chain composed of –SO3⋯H2O linkages, which provides a more efficient pathway for proton mobility. The foregoing results provide not only three new solid-state proton conductors but also a bipyridyl–organodisulfonate strategy for the designing and building proton conducting crystalline organic salts.

Graphical abstract: Proton conduction in three molecular assemblies of bipyridyl–organodisulfonate salts

Supplementary files

Article information

Article type
Paper
Submitted
11 Sep 2025
Accepted
29 Oct 2025
First published
31 Oct 2025

CrystEngComm, 2025,27, 7850-7857

Proton conduction in three molecular assemblies of bipyridyl–organodisulfonate salts

F. Dong, Y. Zhang, K. Zhang, Y. Chen, A. Sun and D. Shao, CrystEngComm, 2025, 27, 7850 DOI: 10.1039/D5CE00880H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements