Sustainable Mechanochemical Approach for the Selective Synthesis of Multicomponent Organic Solids: Real-Time In Situ Insights
Abstract
Crystalline multicomponent organic solids (MOSs) such as cocrystals and ionic cocrystals hold immense potential in diverse functional applications, ranging from pharmaceuticals to optoelectronics. However, conventional solution-based crystallization methods often result in polymorphic mixtures and lack precise control over product composition. Herein, we report a comparative investigation of solution crystallization versus mechanochemical synthesis for constructing MOSs from 9-anthracenecarboxylic acid (ACA) and 4,4ʹ-bipyridine (BPY). Solutionbased approaches consistently yielded concomitant formation of neutral cocrystal (CC) and ionic cocrystal (ICC) forms, regardless of the solvent used. The resulting multicomponent solids were comprehensively characterized using a combination of single crystal X-ray diffraction, powder Xray diffraction, Fourier-transform infrared spectroscopy, differential thermal analysis, and thermogravimetric analysis. In contrast, mechanochemical methods, including neat grinding (without solvent) and liquid-assisted grinding (with minimum solvent), enabled selective formation phase pure of either CC or ICC form. Less polar and nonpolar organic solvents favor the kinetic CC, while polar water promotes formation of the thermodynamically stable ICC. Time-resolved in situ powder X-ray diffraction (TRIS-PXRD) captures the dynamic evolution of solid-state phases and reveals the complete transformation of CC into ICC under neat grinding or water-assisted conditions. This study highlights the powerful role of mechanochemistry and in situ monitoring in steering solid-state reactivity and offers a sustainable pathway for the targeted and scalable synthesis of pure multicomponent organic materials.