Sources of symmetry in ‘Blind Tests’ crystal structures
Abstract
Molecules create crystals via intermolecular interactions that embody long-range order. Previously, close approaches between the aromatic rings of halobenzene molecules, designated ‘Symthons’, were found to be highly effective in creating long-range order in their crystal structures. Here, analysis of 42 ‘blind test’ crystal structures extends the application of ‘Symthons’ to fused rings, heterocycles and five-membered rings. This concept is further adapted to identify hydrogen-bonded approaches which create symmetry. Most of the 42 crystal structures contain at least one Symthon, some of which create long-range order. Other aromatic approaches and hydrogen bonds help to create symmetrical interactions, providing an alternative route to long-range order. In this dataset, hydrogen bonds were both less frequent and less effective at creating long-range order. However, hydrogen bonds were more effective at linking different molecules in salts, hydrates and cocrystals. Implications for nucleation, supramolecular synthons and graph sets are discussed briefly.

Please wait while we load your content...