Native mass spectrometry of membrane proteins reconstituted in peptidiscs

Abstract

Membrane proteins and lipids are essential for a wide range of cellular processes, making their structural characterisation essential for understanding biological function. However, the amphipathic nature of membrane proteins poses a significant challenge for traditional structural biology techniques. Membrane mimetics offer an alternative approach to studying membrane proteins in more native-like environments. Among them, peptidiscs have emerged as a promising tool for stabilising membrane proteins, allowing reconstitution from detergent micelles into a detergent-free, native-like environment that preserves structural integrity. While peptidiscs have shown utility in techniques such as mass photometry and cryo-EM, their compatibility with native mass spectrometry (MS) remains largely unexplored. In this study, we evaluate the feasibility of using peptidiscs for native MS analysis of membrane proteins and their complexes, focusing on the antibiotic resistance efflux pump AceI and the β-barrel assembly machinery (BAM complex). We reconstituted these proteins into peptidiscs using both ‘on-column’ and ‘on-bead’ assembly methods and assessed complex integrity and stability post-reconstitution using native MS. Our findings highlight the potential of peptidiscs as a tool for native MS-based structural characterisation of membrane protein and their assemblies.

Graphical abstract: Native mass spectrometry of membrane proteins reconstituted in peptidiscs

Supplementary files

Transparent peer review

To support increased transparency, we offer authors the option to publish the peer review history alongside their article.

View this article’s peer review history

Article information

Article type
Paper
Submitted
11 Sep 2025
Accepted
17 Oct 2025
First published
22 Oct 2025
This article is Open Access
Creative Commons BY license

RSC Chem. Biol., 2025, Advance Article

Native mass spectrometry of membrane proteins reconstituted in peptidiscs

A. Deedwania, Y. Wang, C. V. Robinson and J. R. Bolla, RSC Chem. Biol., 2025, Advance Article , DOI: 10.1039/D5CB00236B

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. You can use material from this article in other publications without requesting further permissions from the RSC, provided that the correct acknowledgement is given.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements