Chemically inducible antisense oligonucleotides for cell-specific gene silencing
Abstract
Cell-specific control of the function of antisense oligonucleotides (ASOs) is highly desirable for precise gene therapy while minimizing adverse effects in normal cells. Herein, we report a novel class of chemically inducible ASOs (iASOs) that achieve tumor-cell-selective gene silencing through hydrogen peroxide (H2O2)-triggered activation. Through post-synthetic incorporation of phenylboronic acid (BO) caging groups at the backbone positions, we developed iASOs that remain functionally inactive until the H2O2-triggered removal of the BO groups caused activation. Using EGFP as a reporter system, we demonstrated that the optimal BO-modified iASO exhibited slight gene silencing activity in normal cells but achieved >80% knockdown of the target mRNA in tumor cells. The BO-modified iASO was further applied to target the endogenous Bcl2 gene, demonstrating its ability for controlling gene silencing and inducing cell death. This study establishes a simple and effective platform for conditional gene regulation and the development of cell-specific ASO therapeutics.

Please wait while we load your content...