19F NMR-tags for peptidyl prolyl conformation analysis

Abstract

Proline cis/trans isomerism plays an important role in protein folding and mediating protein–protein interactions in short linear interacting motifs within intrinsically disordered protein regions. The slow exchange rate between cis and trans prolyl bonds provides distinct signals in 19F NMR analysis of fluorinated peptides, allowing for simple quantification of each population. However, fluorine is not naturally found in proteins but can be introduced using chemical tags. In this study, we evaluate a range of fluorinated cysteine-reactive 19F NMR tags to assess their ability to react with short, linear proline-containing peptides and accurately report on the equilibrium cis/trans-Pro populations. Several fluorinated electrophilic tags, including nitrobenzenes, sulfonylpyrimidines, and acrylamides, were found to react chemoselectively and reliably report on the %cis-Pro in the model peptide Ac-LPAAC. Other 19F NMR tags were found to be poor reporters of local proline conformation. Although pentafluoropyridine was non-chemoselective, it still reliably reported on %cis-Pro when conjugated via cysteine or tyrosine in Ac-LPAAX (X = Cys, Tyr, Lys) peptides. 3,4-Difluoronitrobenzene was found to be compatible with protein tagging, albeit it had modest reactivity and afforded a pair of regioisimeric tagging-products when reacted with a cysteine mutant of α-synuclein. These tools may be valuable for probing cis/trans-Pro populations in proteins.

Graphical abstract: 19F NMR-tags for peptidyl prolyl conformation analysis

Supplementary files

Article information

Article type
Paper
Submitted
09 May 2025
Accepted
27 Aug 2025
First published
04 Sep 2025
This article is Open Access
Creative Commons BY-NC license

RSC Chem. Biol., 2025, Advance Article

19 F NMR-tags for peptidyl prolyl conformation analysis

G. S. M. Hanson, F. Batsaki, T. L. Myerscough, K. Piché, A. Louwrier and C. R. Coxon, RSC Chem. Biol., 2025, Advance Article , DOI: 10.1039/D5CB00118H

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements